\(\int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [1257]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 45, antiderivative size = 197 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {a^{3/2} (2 B+3 C) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{d}+\frac {a^2 (8 A+6 B-3 C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}-\frac {a (2 A-3 C) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 A \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{3 d} \]

[Out]

2/3*A*(a+a*sec(d*x+c))^(3/2)*sin(d*x+c)*cos(d*x+c)^(1/2)/d+a^(3/2)*(2*B+3*C)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*s
ec(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+1/3*a^2*(8*A+6*B-3*C)*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a
*sec(d*x+c))^(1/2)-1/3*a*(2*A-3*C)*sin(d*x+c)*(a+a*sec(d*x+c))^(1/2)/d/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.78 (sec) , antiderivative size = 197, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {4350, 4171, 4103, 4100, 3886, 221} \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {a^{3/2} (2 B+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {a^2 (8 A+6 B-3 C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {a (2 A-3 C) \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\cos (c+d x)}}+\frac {2 A \sin (c+d x) \sqrt {\cos (c+d x)} (a \sec (c+d x)+a)^{3/2}}{3 d} \]

[In]

Int[Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(a^(3/2)*(2*B + 3*C)*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c +
d*x]])/d + (a^2*(8*A + 6*B - 3*C)*Sin[c + d*x])/(3*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]) - (a*(2*A -
3*C)*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[Cos[c + d*x]]) + (2*A*Sqrt[Cos[c + d*x]]*(a + a*Sec[c +
d*x])^(3/2)*Sin[c + d*x])/(3*d)

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 3886

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(a/(b
*f))*Sqrt[a*(d/b)], Subst[Int[1/Sqrt[1 + x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]

Rule 4100

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Cot[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] +
 Dist[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; Fr
eeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] &&
LtQ[n, 0]

Rule 4103

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*(m +
n))), x] + Dist[1/(d*(m + n)), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n*Simp[a*A*d*(m + n) + B*(b*d
*n) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] &&
NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1]

Rule 4171

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*
Csc[e + f*x])^n/(f*n)), x] - Dist[1/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m -
b*B*n - b*(A*(m + n + 1) + C*n)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && EqQ[a^2 -
 b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || EqQ[m + n + 1, 0])

Rule 4350

Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cos[a + b*x])^m*(c*Sec[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sec[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {(a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 A \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}+\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {(a+a \sec (c+d x))^{3/2} \left (\frac {3}{2} a (A+B)-\frac {1}{2} a (2 A-3 C) \sec (c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx}{3 a} \\ & = -\frac {a (2 A-3 C) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 A \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}+\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+a \sec (c+d x)} \left (\frac {1}{4} a^2 (8 A+6 B-3 C)+\frac {3}{4} a^2 (2 B+3 C) \sec (c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx}{3 a} \\ & = \frac {a^2 (8 A+6 B-3 C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}-\frac {a (2 A-3 C) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 A \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}+\frac {1}{2} \left (a (2 B+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \, dx \\ & = \frac {a^2 (8 A+6 B-3 C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}-\frac {a (2 A-3 C) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 A \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}-\frac {\left (a (2 B+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d} \\ & = \frac {a^{3/2} (2 B+3 C) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{d}+\frac {a^2 (8 A+6 B-3 C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}-\frac {a (2 A-3 C) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 A \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{3 d} \\ \end{align*}

Mathematica [A] (warning: unable to verify)

Time = 7.37 (sec) , antiderivative size = 186, normalized size of antiderivative = 0.94 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {a \sqrt {\cos (c+d x)} \sqrt {a (1+\sec (c+d x))} \left (6 B \arcsin \left (\sqrt {1-\sec (c+d x)}\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)-9 C \arcsin \left (\sqrt {\sec (c+d x)}\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)+\sqrt {1-\sec (c+d x)} (2 A \sin (c+d x)+(10 A+6 B+3 C \sec (c+d x)) \tan (c+d x))\right )}{3 d (1+\cos (c+d x)) \sqrt {\sec (c+d x)} \sqrt {(-1+\cos (c+d x)) \sec ^2(c+d x)}} \]

[In]

Integrate[Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(a*Sqrt[Cos[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])]*(6*B*ArcSin[Sqrt[1 - Sec[c + d*x]]]*Sec[c + d*x]^(3/2)*Sin[c
+ d*x] - 9*C*ArcSin[Sqrt[Sec[c + d*x]]]*Sec[c + d*x]^(3/2)*Sin[c + d*x] + Sqrt[1 - Sec[c + d*x]]*(2*A*Sin[c +
d*x] + (10*A + 6*B + 3*C*Sec[c + d*x])*Tan[c + d*x])))/(3*d*(1 + Cos[c + d*x])*Sqrt[Sec[c + d*x]]*Sqrt[(-1 + C
os[c + d*x])*Sec[c + d*x]^2])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(367\) vs. \(2(169)=338\).

Time = 1.08 (sec) , antiderivative size = 368, normalized size of antiderivative = 1.87

method result size
default \(\frac {a \left (4 A \sin \left (d x +c \right ) \cos \left (d x +c \right )^{2} \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}+20 A \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}+12 B \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}+6 B \arctan \left (\frac {\cos \left (d x +c \right )-\sin \left (d x +c \right )+1}{2 \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \cos \left (d x +c \right )-6 B \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \cos \left (d x +c \right )+9 C \arctan \left (\frac {\cos \left (d x +c \right )-\sin \left (d x +c \right )+1}{2 \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \cos \left (d x +c \right )-9 C \cos \left (d x +c \right ) \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )+6 C \sin \left (d x +c \right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{6 d \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\cos \left (d x +c \right )}}\) \(368\)

[In]

int(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

1/6*a/d*(4*A*sin(d*x+c)*cos(d*x+c)^2*(-1/(1+cos(d*x+c)))^(1/2)+20*A*cos(d*x+c)*sin(d*x+c)*(-1/(1+cos(d*x+c)))^
(1/2)+12*B*cos(d*x+c)*sin(d*x+c)*(-1/(1+cos(d*x+c)))^(1/2)+6*B*arctan(1/2*(cos(d*x+c)-sin(d*x+c)+1)/(1+cos(d*x
+c))/(-1/(1+cos(d*x+c)))^(1/2))*cos(d*x+c)-6*B*arctan(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(1+cos(d*x+c))/(-1/(1+cos(
d*x+c)))^(1/2))*cos(d*x+c)+9*C*arctan(1/2*(cos(d*x+c)-sin(d*x+c)+1)/(1+cos(d*x+c))/(-1/(1+cos(d*x+c)))^(1/2))*
cos(d*x+c)-9*C*cos(d*x+c)*arctan(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(1+cos(d*x+c))/(-1/(1+cos(d*x+c)))^(1/2))+6*C*s
in(d*x+c)*(-1/(1+cos(d*x+c)))^(1/2))*(a*(1+sec(d*x+c)))^(1/2)/(1+cos(d*x+c))/(-1/(1+cos(d*x+c)))^(1/2)/cos(d*x
+c)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 429, normalized size of antiderivative = 2.18 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\left [\frac {4 \, {\left (2 \, A a \cos \left (d x + c\right )^{2} + 2 \, {\left (5 \, A + 3 \, B\right )} a \cos \left (d x + c\right ) + 3 \, C a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 3 \, {\left ({\left (2 \, B + 3 \, C\right )} a \cos \left (d x + c\right )^{2} + {\left (2 \, B + 3 \, C\right )} a \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 4 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{12 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}, \frac {2 \, {\left (2 \, A a \cos \left (d x + c\right )^{2} + 2 \, {\left (5 \, A + 3 \, B\right )} a \cos \left (d x + c\right ) + 3 \, C a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 3 \, {\left ({\left (2 \, B + 3 \, C\right )} a \cos \left (d x + c\right )^{2} + {\left (2 \, B + 3 \, C\right )} a \cos \left (d x + c\right )\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{6 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}\right ] \]

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

[1/12*(4*(2*A*a*cos(d*x + c)^2 + 2*(5*A + 3*B)*a*cos(d*x + c) + 3*C*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))
*sqrt(cos(d*x + c))*sin(d*x + c) + 3*((2*B + 3*C)*a*cos(d*x + c)^2 + (2*B + 3*C)*a*cos(d*x + c))*sqrt(a)*log((
a*cos(d*x + c)^3 - 4*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(cos(d*x + c) - 2)*sqrt(cos(d*x + c))*sin
(d*x + c) - 7*a*cos(d*x + c)^2 + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)))/(d*cos(d*x + c)^2 + d*cos(d*x + c)),
 1/6*(2*(2*A*a*cos(d*x + c)^2 + 2*(5*A + 3*B)*a*cos(d*x + c) + 3*C*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*
sqrt(cos(d*x + c))*sin(d*x + c) + 3*((2*B + 3*C)*a*cos(d*x + c)^2 + (2*B + 3*C)*a*cos(d*x + c))*sqrt(-a)*arcta
n(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos
(d*x + c) - 2*a)))/(d*cos(d*x + c)^2 + d*cos(d*x + c))]

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(3/2)*(a+a*sec(d*x+c))**(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1895 vs. \(2 (169) = 338\).

Time = 0.51 (sec) , antiderivative size = 1895, normalized size of antiderivative = 9.62 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Too large to display} \]

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

1/60*(20*(sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 9*sqrt(2)*a*sin(1/2*d*x + 1/2*c))*A*sqrt(a) + 6*(2*sqrt(2)*a*sin(5/
2*d*x + 5/2*c) + 40*sqrt(2)*a*sin(1/2*d*x + 1/2*c) - 2*sqrt(2)*a*sin(5/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2
*d*x + 3/2*c))) - 20*sqrt(2)*a*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 5*a*log(2*cos(1/
3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x
 + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sqrt(2)*sin(1/3*arc
tan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) - 5*a*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3
/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arc
tan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*
x + 3/2*c))) + 2) + 5*a*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arcta
n2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*
x + 3/2*c))) + 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) - 5*a*log(2*cos(1/3
*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x
+ 3/2*c)))^2 - 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 2*sqrt(2)*sin(1/3*arct
an2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2))*B*sqrt(a) - 15*(2*sqrt(2)*a*cos(7/2*d*x + 7/2*c)*sin(2*
d*x + 2*c) + 6*sqrt(2)*a*cos(5/2*d*x + 5/2*c)*sin(2*d*x + 2*c) + (2*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 6*sqrt(2)
*a*sin(1/2*d*x + 1/2*c) - 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x
+ 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 +
 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*s
in(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 3*a*log(2*cos(1
/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c)
 + 2))*cos(2*d*x + 2*c)^2 + (2*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 6*sqrt(2)*a*sin(1/2*d*x + 1/2*c) - 3*a*log(2*c
os(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/
2*c) + 2) + 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*s
qrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos
(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1
/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*sin(2*d*x + 2*c)^2 - 4*sqrt(2)
*a*sin(3/2*d*x + 3/2*c) + 4*sqrt(2)*a*sin(1/2*d*x + 1/2*c) - 2*(sqrt(2)*a*sin(3/2*d*x + 3/2*c) - 5*sqrt(2)*a*s
in(1/2*d*x + 1/2*c) + 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/
2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*s
qrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1
/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 3*a*log(2*cos(1/2*d
*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2
))*cos(2*d*x + 2*c) - 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/
2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*s
qrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1
/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 3*a*log(2*cos(1/2*d
*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2
) - 2*(sqrt(2)*a*cos(2*d*x + 2*c) + sqrt(2)*a)*sin(7/2*d*x + 7/2*c) - 6*(sqrt(2)*a*cos(2*d*x + 2*c) + sqrt(2)*
a)*sin(5/2*d*x + 5/2*c) + 2*(3*sqrt(2)*a*cos(3/2*d*x + 3/2*c) + sqrt(2)*a*cos(1/2*d*x + 1/2*c))*sin(2*d*x + 2*
c))*C*sqrt(a)/(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1))/d

Giac [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int {\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right ) \,d x \]

[In]

int(cos(c + d*x)^(3/2)*(a + a/cos(c + d*x))^(3/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2),x)

[Out]

int(cos(c + d*x)^(3/2)*(a + a/cos(c + d*x))^(3/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2), x)